
pyCircAdapt Cheat Sheet

CircAdapt

>>> import circadapt

Components

Node
State variable
−

Variable
𝑝

Cavity
State variable
𝑉

Variable
𝑝

Tube0D

Bag
State variable
𝑉

Contains > 0 Cavity

Chamber2022
State variable
𝑉

Contains 1x Wall2022

TriSeg2022
State variable
𝑉𝑚, 𝑦

Contains 3x Wall2022

Wall2022
State variable
−

Contains > 0 Patch2022
Patch2022
State variable
𝑙𝑠,𝑖 , 𝐶

Diode

Resistance

Valve2022
State variable
𝑞

Connector
State variable
−

Variable
𝑞

Contains 2x Node

Solvers
Solvers in the package.

Loading models
>>> import circadapt.model

and create model VanOsta2023
>>> model = circadapt.model.VanOsta2023()

Models are loaded without signals, so you must run at least 1 beat.

Creating models
Always set the solver while creating a custom model.
>>> model = circadapt.CircAdapt(solver=solver)

Add components to the model (see Components).
>>> model.add_component(type, name, parent="")

Run a beat
>>> model.run()

By default, only 1 beat is stored. Store more beats with
>>> model[’Solver’]["store_beats"] = 2

Run 10 beats with
>>> model.run(10)

Pressure-flow-control module determines hemodynamic stability.
>>> model.run(stable=True)

Handling errors
After experiencing numerical instabilities, the ModelCrashed error
is raised. To continue, catch the error.
>>> from circadapt.error import ModelCrashed
>>> try:
>>> model.run()
>>> except ModelCrashed:
>>> # do something

The model raises a ModelNotStable error when no hemodynamic
stability is reached after run stable.
>>> from circadapt.error import ModelCrashed
>>> try:
>>> model.run(stable=True)
>>> except ModelNotStable:
>>> # do something

Get and set data
Parameters act like one dimensional numpy arrays. Signals act like
two dimensoinal numpy arrays with time and objects on first and
second dimension. Two examples:
>>> model["Patch2022"]["Sf_act"][["pLv1", "pSv1", "pRv1"]]
>>> model["Patch2022"]["l_s"][50:, ["pLv1", "pSv1", "pRv1"]]

pyCircAdapt Version 1.0.0b2310

