Chamber2022
Chamber2022 object. |
Documentation
Chamber2022 object.
Parameters
- buckling: bool
Buckling function. If True, wall tension cannot be below zero.
Signals
- V: array
Volume
- p: array
Pressure
The one-fiber model [Arts 1991] simulates a pressurized cavity encapsulated by a wall composed of fibers, immersed in a soft incompressible material. Below, the model is presented briefly. The major assumption is that mechanical energy generated by myofibers dE_f is converted into pump function of the cavity dE_v. without any loss of energy. We define wall shell volume Vsh, myofiber stress σf, natural myofiber strain esilon_f, cavity pressure p and midwall enclosed volume V_m. It holds:
Considering Vsh to be small relative to Vm,, a relative change in fiber strain equals one-third of the relative change in volume, resulting in:
Combining the latter two equations, fiber stress is coupled to cavity pressure:
To accommodate inhomogeneity of mechanical properties in the wall, we modified our approach by inserting Patch-modules, forming together a wall. Linearized mechanical properties of the wall composed of patches are described with a given zero tension mid-wall area Aw0 and wall stiffness dT/dAw. For wall tension T it is found:
In this equation, A_{m,0} and frac{dT}{dA_m} are calculated using the Wall2022 component. At low tension, myocardial fibers may buckle. This model has the option ‘buckling’, which replaces this equation with
The Chamber and TriSeg-module are designed to render cavity pressure(s) as a function of cavity volume(s), given zero-tension area Aw0 and wall stiffness dT/dAm.
A chamber consists of a cavity with cavity volume Vc, wall volume Vw, zero tension midwall area Am0 and wall stiffness dT/dAm. For the primary derivation we use the assumption that the mid-wall surface is spherical with radius r. Using that the mid-wall surface encloses cavity volume and half wall volume, for mid-wall area Aw it holds:
Using Eq.(5) wall tension T is determined. Wall tension T and pressure pc are related by the following equation:
Using Aw=4πr2 and Vm=4πr3/3, Eq. (7) renders cavity pressure pc :
Since pressure pc is written as a function of Vc and Vw, just like with the one-fiber model, the thus calculated pressure is likely to be not very sensitive to differences in geometry, i.e., geometry may differ from spherical.