Valve2022

circadapt.components.connector.Valve2022(model)

Valve2022 valve connects two nodes.

Documentation

Valve2022 valve connects two nodes.

Parameters

adaptation_Aopen_fac: double

factor used

AOpen: float

Opening area

ALeak: float

Leaking valve area

Len: float

Length of valve

rhob: float

Blood density

papillary_muscles: bool

If true, papilary muscle implementation is activated

soft_closure: bool

If true, a soft closure is activated

Signals

q: float

Flow through the valve

qDot: float

Time derivative of the flow q

Module

The Valve module describes flow \(q\) from a proximal to a distal node. The flow \(q\) is a state variable, and its derivative is given by

\[\frac{dq}{dt} = \frac{A_{eff}}{L_{eff}} \Bigg[\frac{q\cdot|q|}{2} (\frac{1}{A_{prox}^2}-\frac{1}{A_{eff}^2})-\frac{\Delta p}{\rho}\Bigg]\]

Inertia term \(L_{eff}\) is given by

\[L_{eff} = 1.5 \cdot \rho \cdot (\frac{l}/{A_{eff}} + 0.5 \cdot (\frac{1}{\sqrt{A_{prox}}} + \frac{1}{\sqrt{A_{dist}}}))\]

The effective valve area \(A_{eff}\) is given by

\[\begin{split}A_{eff} = \begin{matrix} \min(A_{open}, f_{A_{open}A_{ext}}\cdot A_{ext}) & \textup{if} \Delta p > 0 \\ A_{open} & \textup{if} \Delta p < 0 \textup{and} q > 0 \\ A_{leak} & \textup{if} \Delta p < 0 \textup{and} q < 0 \end{matrix}\end{split}\]

The derivative contains of a friction dominated component and inertia component. The first is depending on the pressure difference \(\Delta p\) and blood density \(\rho\), the latter on the flow \(q\) and valve area \(A\).

(Source code)

../../../_images/plot_valve2022_00.png
(png, hires.png, pdf)
../../../_images/plot_valve2022_01.png
(png, hires.png, pdf)